

Management & Technical Status H.Weerts

Introduction/overview

Management & organization

Technical status of detector in numbers & graphical form

Introduction/overview

Original work started on Run II detector in 1990

DoE reviews:

March 1997

January 1998, baselined at this review, PMP

August 1998, mini-review

Project Management Plan from January 1998 review.

Written answers to questions from January '98 review supplied.

Overview of the Run II detector

Muon Detector Upgrade

DoE Review June 1999

Tracking System Overview

All detectors in this volume use SVX II readout

WBS summary

1 DØ Upgrade Detector

- 1.1 Tracking Detectors
 - 1.1.1 Silicon Tracker
 - 1.1.2 Fiber Tracker
 - 1.1.3 Central Preshower Detector
 - 1.1.4 Forward Preshower Detector
 - 1.1.5 Tracking Electronics

1.2 Calorimeter

- 1.2.1 Front-end Electronics
- 1.2.2 Intercryostat Detectors

1.3 Muon Detectors

- 1.3.1 Cosmic Ray Scintillator
- 1.3.2 Central Trigger Detectors
- 1.3.3 Forward Trigger Detectors
- 1.3.4 Forward Tracking Detectors
- 1.3.5 Front-end Electronics

1.4 Trigger

- 1.4.1 Framework
- 1.4.2 Luminosity Monitor
- 1.4.3 Level 1
- 1.4.4 Level 2
- 1.4.5 Level 3

1.5 Online Computing

- 1.5.1 Online Equipment
- 1.5.2 Level 1 and 2
- 1.5.3 Level 3
- 1.5.4 Configuration and Run Control
- 1.5.5 Data Logging
- 1.5.6 Control/Monitoring
- 1.5.7 DAQ Monitoring
- 1.5.8 Event Monitoring
- 1.5.9 Calibration
- 1.5.10 Accelerator Interface

2 Detector R&D

3 AIP Project

3.1 Solenoid

3.1.1 Solenoid

- 3.1.1.1 Management/EDIA
- 3.1.1.2 Superconducting Solenoid
- 3.1.1.3 Fermilab Cryo, PS, etc.
- 3.1.1.4 LHe Refrigeration System 3.1.1.5 Accelerator Machine Modifications

3.1.1.6 Accelerator Services Modifications

Offline Computing NOT **Part of Detector Upgrade Project**

Includes Muon Shielding and Beam Pipe

Funded differently

4 Project Support

- 4.1 Project Management
- 4.2 Fermilab Technical Support

DO reporting structure

DØ Upgrade Project Organization

Notes on organization chart

- ◆ Silicon and Fibers "Level 2" projects.
- Installation/commissioning historically within each subproject.
- Now have coordinators for these activities, but no separate WBS structure
- Tuts & Weerts divided responsibilities:
 - Tuts: Calorimeter, Trigger, Online
 - · Weerts: Tracking, Muon

DO SMT overview

Major SMT Subsystems

- Single Sided Ladder (3 chip)
- •Double Sided 2° Ladder (9 chip)
- •Double Sided 90° Ladder (6 chip)

Electronics

Mechanical Systems

Silicon Status

In production on nearly all aspects

Issues:

Delivery of sensors from Micron/Eurisys Production capability (machinery & people)

Assembly completed: Feb-17-2000

SMT status in numbers

(example of a weekly status report)

		D0SMT Sta	tus 6/9	/99		
In Production	or comple	te				
Partial Shipm						
Prototype Pro						
rototyperit	Jauction					
	ļ. <u>.</u>					
HDI Produ	ction					
Description	# Needed	Company	%	Last wk	Date Available	Comments
3-chip short	48	Dyconex	100	100%	Dec-98	61 delivered 02/08/99
3-chip long	24	LPC	100	100%	Jan-99	55 delivered 1/10/99
6-chip short	96	Compunetics	0	0%	Jul-99	P.O.
6-chip long	48	Compunetics	42%	0%	Jul-99	P.O (20 pcs 5/28)
9-chip short	144	Speedy Circuits	0	0%	Jun-99	P.O.
9-chip long	72	Dyconex	100%	100%	Mar-99	Complete
6-chip F	144	Compunetics	17%	17%	Jul-99	P.O.
8-chip F	144	Compunetics	28%	28%	Jul-99	P.O.
6-chip H	192	Compunetics	13%	13%	Jun-99	P.O. (230 pcs 5/31)
Detector P	roductio	n				
Туре	# Needed	# Received	%	Last wk	Date Complete	Comments
3 Chip	144	>144	100%	100%	Jun-97	Complete
6 Chip	144	12	8%	0%	Nov-99	Received 11 6/7/99
9 Chip	432	240	56%	49%	Dec-99	
F disk	144	21	15%	7%	Dec-99	
H Disk	384	260	68%	55%	Jul-99	
Module Pro	oduction					
Туре	# Needed	Fixtures	Built	Last wk	Date Complete	Status
3 Chip	72	Complete(2/2)	14	9 (7)	Jul-99	Production (5/wk)
6 Chip	144	Checking	0	0	Dec-99	Prototype
9 Chip	216	Complete (2/4)	16	13 (11)	Jan-00	Production (2-4/wk)
F disk	144	Prototype	0	0	Dec-99	1st elect HDI in test
H Disk	192	Complete(2/2)	3	2 (1)	Dec-99	Production (1-2/wk)
						, ,
Supports a	and Infra	structure				
Туре	# Needed	% complete	Last wk		Date Complete	Status
Bulkheads	6	100%	100%		Jun-99	Production
F Disk	12	33%	33%		Jun-99	Prototype ok
H Disk	4	100%	100%		Jul-99	Measuring
C fiber cylinder	1	0%	0%		Jul-99	2 prototypes
Test Systems	8	100%	100%		Feb-99	Complete
-						
Assembly	and test					
Milestone		% complete			Date Complete	Status
Full Crate Test		100%			May-99	Complete
Barrel Dry Assembly		10%			Jun-99	set-up, alignment
10% Readout system		7.7			Jul-99	
Full Barrel/Disk Module					Aug-99	
H Disk Ring					Sep-99	
F Disk Ring					Sep-99	

June 1999

Fiber Tracker Overview

Scint Fibers

- 830μm Ø, multiclad
- 1.6-2.5m active length
- 10m clear waveguide to photodetector
- rad hard (100 krad) (10yr @ 20cm @10³²)

Fiber Ribbons

- 8 axial doublets
- 8 stereo doublets (3º pitch)

Readout

- → 77,000 channels
- VLPC readout
- run at low temp (9°K)
- fast pickoff for trigger
- SVXII readout

Fiber tracker status

Issues:

Start production
Production capability (people)

Detector construction, VLPC

Assembly completed: Jan-24-2000

DoE Review June 1999

Forward Preshower Status Report: June, 1999

FPS - South Installed at Fermilab: September 22, 1999 FPS - North Installed at Fermilab: January 14, 2000

Detector Hook-up Complete: February 4, 2000 (North), April 18, 2000 (South)

Project on-schedule, no items on critical path.

Central Preshower

- Detector installed
- Clear waveguide design nearly complete and waveguide construction will begin soon
- Readout channel mapping is being developed
- Preparation for the cosmic ray test to precise determine the yield is under the way

Silicon + Fiber tracker Electronics

enable to start production and testing

Silicon

Fiber Tracker Electronics

Includes parts of the Level 1 tracking trigger

Solenoid & Field Mapper in Bore of Central Calorimeter

- Solenoid System Commissioned Sept 1998
- Chimney Bus Lower Joint Repaired Jan 1999
- Precision Fieldmapping Summer 1999

Calorimeter Electronics Status (WBS 1.2.1)

 Replace 60k channels of preamp, SCA, shaper, calibration, and power supplies

CC, ECN, ECS cryostats

last ECS: finish recabling: Mar-18-2000

Inter Cryostat Detector (ICD)

Oct-99: Install North & South ICD

Mar-99: Finish hookup

Muon Detector Upgrade

DoE Review June 1999

Muon detector status

Central muon: complete & driving commissioning

Forward muon:

- MDT production at DUBNA
- Assembly into octants (48 for pixels and 48 for MDT's)
- •Installation: BIG pieces

Assembly completed: Jul-10-2000

Muon electronics

Lab F, E: Forward muon assembly factory

Muon system assembly needs a lot of space.

Provided in Lab F & E.

Both in use.

Trigger Overview

For L= $2x10^{32}$ cm⁻² s⁻¹ (Bunch Crossings at 132 ns; Deadtime: < 5%):

Trigger Status

Not a critical path item for detector completion

Commissioning

Online status

Ready to start commissioning of detector. Critical pieces available to start:

Controls

DAQ & Event Monitoring

Installation & Commissioning

- No status chart
- Installation has started already
 - more details from J.Kotcher
- Commissioning
 - starting with central muon system
 - in assembly areas
 - · silicon 10% test
 - cosmic ray test fiber tracker

Summary of status & issues

Last technical problems: Flex circuits (CFT) and HDI (SMT) solved

I ssues summary:

- Silicon Sensor delivery schedule
- Start mechanical production of Fiber Tracker
- Maintain production schedules of trackers (SMT,CFT)
- Roll in ready date: May 15, 2000 ==> success oriented schedule

Not explicitly mentioning all the successes & progress, detectors/parts complete, electronics in hand & tested.

Not mentioned software & computing: Von Rueden review last week Status: very good

Muon Forward Trigger detectors

- 4608 counters
- ◆ 3 layers to reduce combinatorics
- Counter sizes $\Delta \eta \times \Delta \phi = 0.1 \times 4.5^{\circ}$

(enable trigger on low P_t muons)

630 counters, built at ITEP, Russia & NIU, US all counters tested & installed

Forward Muon Trigger Pixel octant from A Layer

Lab F production facility

Picture of first complete & cabled

Need to build 48 octants; total 4608 counters

